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Zeros of the Partition Function and Gaussian 
Inequalities for the Plane Rotator Model 
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The parti t ion function for ferromagnetic plane rotators in a complex 
external field It, with Jim It[ ~< [Re It[, is bounded below in modulus by its 
value at It = 0. The proof  is based on complex combinations of duplicated 
variables which are positive definite on a subgroup of the configuration 
group. In the isotropic situation (and It = 0), the associated "Gauss ian  
inequalit ies" imply that  all truncated correlation functions decay at least 
as the two-point function. 
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1. INTRODUCTION 

We consider a family of  plane rotators ,  i.e., a family of  r a n d o m  two-dimen-  
sional unit  vectors {Sj = (Sjl, S j 2 ) : j =  1 .... , N }  with jo int  probabi l i ty  
distr ibution on (~2)N: 

Zff 1 exp (J~kSjlSk 1 + J~kSj2S~ 2) + p.j.Sj ~(Si 2 - 1) dSj (1) 
t.j,k=X 3'=1 

where 

z N  = z N ( ( ~ j ) j = ~  .. . . .  , ,) 

exp (j~kSslSk~ + 2 2 2 3(Ss 2 - 1) dSj = JjkSs Sk ) + ~ j .S j  

(2) 
Models  of  physical interest m a y  be obta ined in a t he rmodynamic  limit 

N - +  oo, in situations where the pressure can be defined, 

p((~j)j) = l im N -~ log ZN((~tj)j=I ..... N) 
N-~co 
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and depends only on bulk variables: asymptotically, it varies with (~tj)j only 
when a finite fraction (i.e., proportional to N) of the ~tj are varied. In par- 
ticular, the pressure is independent of  "boundary  conditions." If, moreover, 
we can replace t~j by ~tj + g for an arbitrary fraction of the sites j and have 
the pressure analytic in ~ around ~ = 0, it follows that the correlation 
functions averaged over this arbitrary fraction are also independent of  
boundary conditions. All these partial averages presumably determine the 
state of the system, which would then be unique. This motivates the study 
of the analyticity of  the pressure as a function of a nonuniform external 
field (~j)j. The problem is to find complex neighborhoods of (~j)J=l ..... N 
which do not shrink to the reals as N - +  ~ ,  where the partition function ZN 
has no zeros. 

This program was initiated by Lee and Yang +) for the Ising model and 
was continued for quantum spins by Asano a) and Suzuki and Fisher. a2) 
This allowed a complicated approximat iog  ~) to the plane rotator model which 
implied analyticity of  log Zu((t~j)j= 1 ..... N) in the variables (/z/)j= ~ ..... N only, 
in the region 

Re/zj ~ > 0, j = 1,..., N 

provided 

]J~l ~< J ~ ,  j, k = 1,..., N; /zj 2 + •, j = 1,..., N 

Using full analyticity in the large external field region, Fr6hlich (v then 
proved analyticity in (tz/)j and (t~j2)j in some complex neighborhood of 

/zj ~ > 0, /zj 2 + ~ Vj (3) 

and also indicated a precise procedure to implement the program outlined 
above (unicity of the state in the same region). 

The present paper is first devoted to more direct proofs of analyticity 
for the plane rotator model: without any approximation procedure, and 
without appealing to large external field expansions, we shall prove a stronger 
result, namely 

[ZN((~,)j=~ ..... N)I >/ ZN(0) (4) 

for (~j)~=l ..... N belonging to an explicitly constructed complex region 
(Theorems 1 and 2 below). The intersection of this region with the reals is, 
however, a little smaller than (3). 

Our second topic is the "Gauss ian  inequality" for the same model, but 
in the absence of an external field. Gaussian inequalities were first proven for 
Ising spins by Newman a~ as a consequence 2 of the Lee and Yang theorem. 
In our framework, the same tools will provide at the same time the lower 
bound (4) and a strong version of the Gaussian inequality, applicable to 

2 This concerns a weak form of the inequality. Newman's stronger results are based on 
combinatorial methods. 
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truncated correlations, such as that given by Bricmont. (2~ These tools general- 
ize previous work (3) on one-component classical ferromagnets: appropriate 
complex combinations of  duplicated spin variables are shown to be positive 
definite on (a subgroup of) the configuration group. All our results express 
the fact that such combinations have a positive integral over the configuration 
space. 

If  the lengths of the rotators are also random variables, the method does 
not seem to be directly applicable and one has to appeal to a random walk 
approximation .(5) 

2. A LOWER B O U N D  ON THE M O D U L U S  OF THE 
C O M P L E X  PARTIT ION F U N C T I O N  

Our method is restricted to two-body ferromagnetic couplings. To 
simplify the formulation, we first consider the isotropic case: 

Theorem 1. Let Zu((~-t)j) be given by (2) with 

J ~  = J~k /> 0, j, k = 1,..., U 
Let 

xj = Re ~j, yj = Im ~xj, j = 1 ..... N 

Let yj• be the image of Yt under a rotation by ~r/2. Suppose that 

(xt _+ yj• yk ~) /> 0, j , k  = 1 .... , N  (5) 
Then 

[Zu((~Xt)t)[ >i ZN(0) (6) 

Remarks. Theorem 1 implies analyticity of the pressure in a neighbor- 
hood of a real external field (xj)j provided 

inf x t .x  k > 0 
t , k  

When all the real external fields xj point in the same direction, condition 
(5) reads 

lYt[ ~< Ix/ Vt 
Proof. We introduce an independent copy (S/)j=I ..... N with the same 

probability distribution (1) for real (~t)J. When extending the partition func- 
tion to complex external fields, we use 0xt)t for the original copy, and the 
complex conjugate (~tt*)j for the primed copy. We then have 

IZ~( (~ t )3 l  ~ = z ~ c ( ~ 3 ; ) z ~ ( ( ~ # ) 3  

= exp J~k(Sj.S~ + S/ .Sk ' )  + (~j.Sj + P-t*'S/) 
~.. t ,  ,k: = :1. j ' = l  

N 

x / - ~  3(S, 2 - 1) dSt 3(S} 2 - 1) d S j  (7) 
Y = I  
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Clearly, the a priori  measure is invariant under  the action o f  
(0(2)  x O(2)) N. We shall choose a particular subgroup and express the 
integral (7) as the sum of  the integrals over the orbits associated with the 
action of  this subgroup. In order to have a positive integral over each orbit,  
we choose the subgroup so that  the ferromagnetic  interaction and the complex 
linear par t  are bo th  positive definite on it, for  each orbit.  More  trivially, we 
make the following change of  variables: 

' /cos fi~-\ 
Sj + S; = (cos %.)i~. = (cos a j ) [ s in /3 , )  2 , j = I , . . . , N  

(8) 
- ' [ sin/3j]  

S~. 2 Sj = (sin cg)~j • -= (sin %) \ - cos/3j] '  j = 1,..., N 

where ~j and ij a are or thogonal  unit  vectors associated with angles/3j and 
/3j - br ,  respectively. Rota t ion invariance gives the new a priori  measure 

3(Sj 2 - 1) dSj.  3(S~- 9' - 1) dS / - -+  d% d/3j 

The direction/3j = 0 will now be chosen, the same for all j ,  but  depending 
on the external fields: 

l~j.Sj + $ts*.S / = 2(cos %)xj.~j + 2i(sin %)yj.~j~ 

= 2(cos cg)xj.~ s + 2i(sin %)yj• 

= e~j(xj + yj• + e -%(x j  - yj• 

Under  hypothesis (5), all the (xj +_ yj• j = 1,..., N, lie in a given 
quadrant ,  so that  we may choose the origin/3 = 0 in such a way that  

(xj + yj• = aj cos/3s + bj sin/3j 

(xj - yj• = cj cos/3j + dj sin/3j 
with 

as />0,  b j / > 0 ,  c j1>0 ,  d j > t 0 ;  j =  I , . . . ,N  

In any case, the isotropic coupling terms will read 

J~k(Sj" S~ + S / .  Sff) = J~k(#%e- *,k + e- 1%e~%) 

Let us now write 

cos/3j = ~slcos/3,1, 
sin/3 s = %lsin/3jl, 

• (cos/3j cos/3k + sin/3j sin/3~) 

% =  + 1 e 7 / 2 ;  j = l  .... , N  
(9) 

~ ' j = + l e 7 7 2 ;  j =  1,..., N 

and look at orbits in configuration space obtained by the action of  
(U(1) • 2~2 x ;v2)N on the variable (e~% %, rj)j=l ..... N. The integral (7) 
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restricted to every such trajectory is seen to be positive, being the integral of 
a positive definite function. The bound (6) is obtained by expanding the 
exponential of the external field and retaining only the first term: the others 
are also positive definite and therefore give a positive contribution to the 
integral. The sum over trajectories (i.e., over [cos flj], [sin flJI, J = I .... , N) 
clearly does not affect the argument. 

We shall now extend Theorem 1 to include the anisotropic case J~ir # 
J ~ .  Notice that the two-body interaction in (1) does not contain terms of 
the form 

J ~ ( s / s ~  2 + s / s 2 )  

If  such terms were present, there would be for each bond (j, k) a unique 
change of axes which eliminates these crossed terms and leads to 

Jy~/> IJP~] 

In the next theorem, we have to assume that the same choice of axes for 
all bonds leads to this situation. In other words, the two-body interaction 
favors the same direction throughout the system. The real external fields will 
then be allowed to vary within 7r/4 from this direction. 

Theorem 2. Let ZN((~t,)j) be given by (2) with 

J~k >/ ]J~el, j, k = 1,..., N 

Let xj, yj, y / b e  defined as in Theorem 1. Let $ be the direction labeled by 1 
in (2) and let $ • be its image under a rotation by ~/2. Suppose that 

(x, + yj• + J ' )  /> 0, j = 1,..., N (10) 
Then 

IzN((~j),)I/> zN(o) 

ProoL The proof'is the same as that of Theorem 1, except that the choice 
of the origin/3 = 0 is imposed by the anisotropy: the two-body interaction 
will be positive definite on (U(1) x 7/2 x ~2) x if and only if/3 = ~-/4 cor- 
responds to the dominant ferromagnetic direction J. We leave this easy cal- 
culation to the reader. 

Remark. As for one-component systems/3> it is possible to prove lower 
bounds also for correlation functions in a complex external field. The result 
is simple only for one or two spins: 

Re(S~ 1 + Sj 2) /> IIm(S/ g Sj2)] (11) 

Re(Sj.~S~ ~ _+ Sj2S~ z) >1 0 (12) 

We cannot, however, bound such correlations by zero-field correlations, 
as we did for the partition function. 
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3. T H E  G A U S S I A N  I N E Q U A L I T Y  

In the preceding section, we have given tools to prove analyticity in the 
"posi t ive"  external field region. The present section is mainly devoted to the 
case of zero external field: the situation is very different, but the same tools 
will provide a straightforward proof of a strong version of  the "Gaussian 
inequality" (see Theorem 3 below). Note that this inequality has also been 
proven by Bricmont, (2) using the negative correlations of different components 
of a D-component spin (D = 1, 2, 3, 4). The case D = 1 is there considered 
as a special case of D = 2 through a duplication. Results for D = 1 were 
previously obtained by Lebowitz, (8) Feldman, (6) Spencer/11~ and Newman. ~1~ 
In our framework, D = 1 is actually easier than D = 2, the conditions on the 
individual spin distributions are those given in Ref. 3, and the results can be 
read from Theorem 3 below by suppressing the upper index 1. On the other 
hand, our method is at present not applicable to D = 3, 4. 

For simplicity, we first give a theorem (D = 2) for the first component 
only: 

T h e o r e m  3. Under the hypotheses of Theorem 2, for any family of 
elements in (1,..., N} indexed by a finite set A, let 

N 

+ t~j.Sj 3(Sj 2 - 1) dSj (13) 
1=1 

Suppose in addition that (~tj)j is real. Then: 
(i) If  IAI = 2n, n >1 2, 

( s a l )  ~< (2~ - 2)-1 B~A (SB1)(S9~> <<" ~ I--~ <S~1S~2> (14) 
~r~(A) (./1,]2}~n 

Br 
IB[even 

where B = AIB and ~(A) is the set of partitions of A into pairs (" pairings"). 
(ii) I f  [A~] = 2nl and ]A21 = 2n2, 

<S~S~2>z 1 _ <S~><SA2>~ 1 <~ 2- .~-~+~ ~ <SBISB~><SmS~ 1 ~ 
BI cA1;B 2 cA2 

IBzI,IB21odd 

~< E ] ~  < SjZl S}2) (15) 
Z~.6a(A1 ;A2) {11,,42}~ 

where Bx = A~\B~, B2 = .4~,\B2, and ~(.4~;A2) is the set of pairings of 
A1 w .42 where at least one pair intersects both A~ and A2. 
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Remarks. For  isotropic interactions (J)k = J~,), the direction 1 may be 
changed, depending on the external field (Ixj)j. I f  it vanishes, (Fj)j _= 0, the 
direction 1 becomes arbi t rary and the inequalities above will hold for any 
choice of  the first component .  

When (txj)j = 0, Theorem 3 implies that  the truncated correlations of  
the first component  decay at least as the two-point  function of  this component .  
Using inequalities <4) between t runcated correlations where the choice o f  
components  is varied, the same result follows for  all t runcated correlations. 

Proof. The second inequality in (i) can be obtained from the first by 
induction over n, as was shown by Bricmont.  The second inequality in (ii) 
follows from the first and from (i) similarly. And the first part  of  (i) and (ii) 
will follow from a lemma: 

L e m m a  1 Let rTz j2  ~ and (Ixj)j=l ..... ~ be as in Theorem 2. �9 ~ , ' J j k ,  j ~ ] j , k = l , . . . , N  

Consider the linear functional on multinomials in (Sjl)j = 1 ..... N and (S}I)j = ~ ..... N 
defined by (13) and 

(SBZS'c ~) = (SB~)(Sc ~) (16) 

Then,  for  any function e f rom the index set A to {+ 1, - 1}, we have 

~-(~ + S~.) t> 0 (17) 

Proof of the Lemmo. As in the p roo f  o f  Theorem 1, where/3 = w/4 is 
now the direction labeled by 1, we write 

t%w/4)]Sk~ [exp(i%w/4)]S~o + [ e x p ( - '  ' l  

= ,~- 1/2rtql S,z~ ie~(S~, S~1)] "~ t k ~  -~- /ca} "~  

= 2-1[(cos ako)(cos/3/c, + sin/3~,) + &~(sin c~)(sin/3k~ - cos/3ko)] 

= 2-x~k~176 + 2-z~'ko[exp(i%~ko)lsin/3/col (18) 

which is positive definite on (U(1) x Z2 x ;~2) N. But we have already seen 
that  the Boltzmann factor is positive definite, so that  the lemma just states 
that the integral of  a (product  of)  positive definite function is positive. 

Proof of the Theorem. The first inequalities in (i) and (ii) are obtained 
by summing (I 7) over appropriate  choices of  (ea)~A. We begin with (i), which, 
in duplicated form, is nothing but  

t ok~ + ,~ ~ ~-'/cos/ /> 0 (19) 
(ea)a~A 

5" ea  = 4 m o 6 . 8  
a~A 
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Indeed, if we expand the product using definition (16), we obtain 

[ - < s 2 >  - <s~1> 
(~:a)aeA 

Ysa = 4rood8 

+ ~ exp t? % - %, (SBI><Sbl> /> 0 
B o A  

B r  ~ , A  

Let us compute the numerical factors separately: 

( ea )aeA  
"Zea = 4rood8 

= 8 -1 exp i~  
(~a)a~A q = 0 

( = 8 - 1  -)~ exp i 

x exp iT l (q -  1 

{i 
~- ~ _ 22~- 2 if 

= if 

~-1 if 

( ~  % - 4)q] exp[i4 ( ~  % - ~ %')] 

( q +  1 ) ]+  e x p [ - i ; ( q  + 1)]} 'm 

+ 0xp[_/-Z q_ q / '  
1~1 = 2n or IBI = 0 

l~l odd 

1~1 even, IBl # O, 2n 
Inserting this result in (20) gives 

_(2.-1 _ 1)(<SAI> + <S~1>) 

(20) 

(21) 

B o A  
[Bleven,  # 0 , 2 n  

o r  

< & l >  + < & l >  .<. (2- - 2) -1 ~ .  ( < & l > < s ~ l  > + < & , > < & l > )  (22) 
B o A  

IB[even,  r 0 ,2n  

If we now suppose that (~*j)j is real, (22) becomes the first inequality in 
(14). Similarly, to prove part (ii) of the theorem, we start from the lemma in 
the following combination: 

E l-~ "r~176 + - = ~,~o,/  >/ 0 (23) 
g a  = a - r o o d 8  a ~ A I U A 2  

AX ~ A2 
eul -- ~ ea2 = Omod8 

A1 A2 

Again, we expand the product 

exp i  a % -  ~ eb. 
ea = 4rood8 B l C A 1  k L B 2 ~ l U / ~  2 

A I u A 2  - d ~ B 2 c A  2 
Ca1 -- ~ 8a2 = unlo 

AI A2 

1 1 ' I  '1 x <S~SB=)(S&S~2 > >i 0 (24) 



Zeros of the Partition Function and Gaussian Inequalities 569 

and compute the numerical factors separately: 

exp i~ ~" e b -  ~ eb, 
Y a = 4 I n ~  BltJB2 B 1 u B 2  

AIUA2 
A~I Eal-- f2 E~2 = 0rt1Od8 

8-'I; 2 = exp t - q  ~ + + - 4  
4 Ea p,q=O 1 u A  2 

x exp l ~ p  % 1 -  %2 
A2 

x e+['4( Z + -  z . ) l  
kBIuB2 ~ l U ~  2 ] J  

= 8-22 ~ iq+'exp i-4( q +p + 1) + c.c. 
q+P=0,2 ,4 ,6  

x@xp[i4(q+p- l)]+c.c.} +.~'+) 

x (,+_,=~o.+,4.+iq-+'@xp[i; (q -p + l)] + c.c.}'++"' 

x@xp[i4(q-p- l)] +c.c.} '+2') 

kq+p=l,3,5,7 J\q-p=l,3,5,7"") 

{ -22~i+~-: -+ if IBd = ]B~I = 0 or ]~iI = l~I = 0 

2~+i+~ -+ if IB~I = I~I = 0 or l~r = IB~I = 0 (25) 

2+*+~= -* if ]B+ I, ]B21 odd 

0 otherwise 

Inserting this result in (24) gives the desired inequality in complex form 
(under the hypotheses of Theorem 2): 

<slfl~> + c.c.  - ( < s 1 ~ > < s ~ >  + c .c . )  

~< 2-~-%+1 ff~+ 1 1 1 1 c.c.) (26) (<SBflB2><S~fl~> + 
B 1 cA 1 ;B~ cA 2 
IBll,IB21odd 

The next .theorem deals with odd correlation functions, in the presence 
of a" positive" external field. The inequalities will be weaker than the desired 
Gaussian inequalities. 
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Theorem 4. (Same hypotheses as Theorem 3.) 

(iii) if IA[ = 2n + 1, 

(SA 1) ~< (2 .+1 _ 2)-1 ~ (SB1)(Sel) 
B c A  

B = ~ , A  

<<. ~ ~ (S~%} 1-~ (S},S}=) (27) 
aoeA ze,~(A\{ao}) UZ,J2}E~t 

(iv) If lAd -- 2nl + !, I&l -- 2n2, 

1 1 <s~ls, @ - ( s~I ) ( sL)  

2-,h-n2 ~ i i z 1 
B l C A 1 ; B 2 c A 2  

}B21odd 

aoeA1uA2 ae,.~(Al\{ao};a2\{ao}) ( Jx,./2}e~z 

Remark. An example for (27) is 

( s?&ls?)  < (sr Js?)  + (&~)(scs?)  + ( s? ) ( s /&~)  

whereas the relevant Gaussian inequality would be the GHS inequality, which 
has been proven for Ising-like systems: 

(%a~a,> ~< ((@@k~> + (%)(%cr,> + @,>(%<rk) - 2(%>(%>@~> 

So far as we know, the GHS inequality is the only proven odd Gaussian 
inequality. 

Proof o* (iii)and (iv). We omit the calculations, which go like those in 
the proof of Theorem 3. The respective starting points are 

,te'"~/4~lok= + S~o) > 0 (29) 
(~a)aeA 

7 Ca = :i: 3 m o d 8  
aeA 

~ (e"="/~S~= + ~ ~ ~,~o,/ >1 0 (30) 
(Ea)a~ AI O A2 a~A I U B2 

a~A~uA2 [ia = .4- ;S tood8 

X t~al - a 5" r  = 4- lmod8 
aleAl 2~A2 

As already mentioned, one knows how to bound correlation functions 
involving both components in terms of the correlation functions of the first 
component, which in turn are controlled by Theorem 3. To illustrate the 
present method, we shall, however, write down some inequalities for mixed 
components which we can obtain directly. 
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We look back at (8) and (9), where the direction 1 corresponds to 
/3 = 7r/4. We see that  a cone o f  positive-definite functions on U(1) x 772 x Z2 
is generated by 

e~'~14Sj 1 + ~e-~'v4Ss 2 + e-~'~/4S~ .1 + ~e~'~14S~.2 (31) 

w i t h e =  !1,~7 = i l .  
Therefore Lemma 1 can be strengthened, with obvious notat ions and the 

same hypotheses, to the following: 

L e m m a  2. For  any family o f  elements in {1,..., N} indexed by a finite set 
A, and for any function (E, 7) f rom A to {+  1, - 1} x {+  1, - l}, we have 

t~ ~ + % ~,k~ + + 'I~ ~ j /  I> 0 (32) 

C o r o l l a r y .  For  any function e f rom A to {+  1, - 1} and for any A2 s A, 
we have 

a~A\A 2 a~A2 

e-iea~14 '1 

P r o o f  o f  N o  Corollory. Expand (32) in A = A~ u A2 and sum over 
subject to ~A~ -- I-L~A~ ~ = cst for the given A2. 

The corollary allows us to strengthen Theorem 3 to the following: 

Theorem 5. Let (Jj�89 J~e)j,~=~ ..... N and (~j)j=~ ..... N be as in Theorem 2. 
Suppose in addit ion that  (~j)j is real. Let A = A~ u A2, ~ = A~ n A2, 
I AI = 2n. Then:  

(i)' I-(sN~)(sN=) + (2" - 2) -~ ~ ( S ~ S g = ) ( S } S } = )  I 
BI c A I ; B  2 c A  2 

[Bl~./~2leven, r 0 ,2n 

- < s 2 )  + (2- - 2) -~ .~.~ <&~)(&~> 

IBleven,  r 0 ,2n  

1 2 1 2 1 2 (i") I - < s ~ & ~ >  + (2- - 2)-~ ~ <s~s~><s~s~>l 
B 1 c A 1 ; B 2 c A 2  

{Blu, B21even, r 0 ,2n 

~< - ( S ~ I ) ( S ~ = )  + (2" 2) -~ ~ * ~ ~ - ( S ~ , S ~ = ) ( S a , S a ~ )  
B 1 c A 1 ; B  2 c A  2 

IB1 o.~2leven,  r 0 ,2n 
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(ii') I f  IA2[ is also even, 

1 2 ]<SALSA= ) _ 1 9. 2-~+1 2 1 2 
B 1 r  

[Bll,]B2lodd 

<. -<s2> + <si><s~> + 2 -~§ ~ ~ ~ 1 < S ~IS ~>< S ~,S ~ 2> 
B1 c A1;B2 cA2 

[Bll,lB2lodd 

(ii") if  l a d  is also even, 

<s~is~> + <s~><&~ >+ ~, <s~s~><s~,.s~2>l 
B1 c A 1 ; B 2 c A 2  

[Bll,lB2lodd 

<< <SAI> 1 2 2 - . + 1  < SB~S ~=>< S a~S a2 > 
BI C AI;B2cA2 
IBI], ]B21odd 

Proof. Given the corollary, the proof is identical to that of Theorem 3. 

Remark. W h e n  (Fj)j  = 0, Theo rem 5 bounds  the devia t ion  f rom 
Gauss i an  corre la t ions  for  mixed componen t s  by  an ana logous  devia t ion  for  
the  first componen t .  
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